Scarecrow plays a role in establishing Kranz anatomy in maize leaves.

نویسندگان

  • Thomas L Slewinski
  • Alyssa A Anderson
  • Cankui Zhang
  • Robert Turgeon
چکیده

More than a quarter of the primary productivity on land, and a large fraction of the food that humans consume, is contributed by plants that fix atmospheric CO(2) by C(4) photosynthesis. It has been estimated that transferring the C(4) pathway to C(3) crops could boost yield by 50% and also increase water use efficiency and reduce the need for fertilizer, particularly in dry, hot environments. The high productivity of maize (Zea mays), sugarcane (Saccharum spp.) and several emerging bioenergy grasses is due largely to C(4) photosynthesis, which is enabled by the orderly arrangement, in concentric rings, of specialized bundle sheath and mesophyll cells in leaves in a pattern known as Kranz anatomy. Here we show that PIN, the auxin efflux protein, is present in the end walls of maize bundle sheath cells, as it is in the endodermis of the root. Since this marker suggests the expression of endodermal genetic programs in bundle sheath cells, we determined whether the transcription factor SCARECROW, which regulates structural differentiation of the root endodermis, also plays a role in the development of Kranz anatomy in maize. Mutations in the Scarecrow gene result in proliferation of bundle sheath cells, abnormal differentiation of bundle sheath chloroplasts, vein disorientation, loss of minor veins and reduction of vein density. Further characterization of this signal transduction pathway should facilitate the transfer of the C(4) trait into C(3) crop species, including rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using evolution as a guide to engineer kranz-type c4 photosynthesis

Kranz-type C4 photosynthesis has independently and rapidly evolved over 60 times to dramatically increase radiation use efficiency in both monocots and eudicots. Indeed, it is one of the most exceptional examples of convergent evolution in the history of life. The repeated and rapid evolution of Kranz-type C4 suggests that it may be a derivative of a conserved developmental pathway that is pres...

متن کامل

Individual Maize Chromosomes in the C3 Plant Oat Can Increase Bundle Sheath Cell Size and Vein Density1[W][OA]

C4 photosynthesis has evolved in at least 66 lineages within the angiosperms and involves alterations to the biochemistry, cell biology, and development of leaves. The characteristic “Kranz” anatomy of most C4 leaves was discovered in the 1890s, but the genetic basis of these traits remains poorly defined. Oat 3 maize addition lines allow the effects of individual maize (Zea mays; C4) chromosom...

متن کامل

Leaf Anatomy of Orcuttieae (poaceae: Chloridoideae): More Evidence of C4 Photosynthesis without Kranz Anatomy

C4 photosynthesis without Kranz anatomy (single-cell C4 photosynthesis) occurs in only 0.003% of known species of C4 flowering plants. To add insight into the evolution of C4 photosynthesis, we studied the tribe Orcuttieae (Poaceae: Chloridoideae), which has species that can grow under both aquatic and terrestrial conditions, and utilize single-cell C4 photosynthesis when growing submerged. Car...

متن کامل

Developmental anatomy of Cyperus laxus (non-Nranz) and Fimbristylis dichotoma (Kranz) (Cyperaceae, Poales) and tissue continuity.

The Cyperaceae species are present in different ecosystems and constitute the herbaceous extract. Of the approximately 5,500 species of the family; a third has Kranz anatomy, representing an important characteristic of the taxonomy and phylogeny of the group. In Cyperus laxus L. (non-Kranz) and Fimbristylis dichotoma Vahl (Kranz), development begins with germination that is marked by the emerge...

متن کامل

Occurrence and forms of Kranz anatomy in photosynthetic organs and characterization of NAD-ME subtype C4 photosynthesis in Blepharis ciliaris (L.) B. L. Burtt (Acanthaceae).

Blepharis (Acanthaceae) is an Afroasiatic genus comprising 129 species which occur in arid and semi-arid habitats. This is the only genus in the family which is reported to have some C(4) species. Blepharis ciliaris (L.) B. L. Burtt. is a semi-desert species with distribution in Iran, Oman, and Pakistan. Its form of photosynthesis was investigated by studying different organs. C(4)-type carbon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 53 12  شماره 

صفحات  -

تاریخ انتشار 2012